Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Clin Invest ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722697

ABSTRACT

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske Iron-Sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, they underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA-seq revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in alpha-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.

2.
JCI Insight ; 9(8)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502186

ABSTRACT

BACKGROUNDSurvivors of pneumonia, including SARS-CoV-2 pneumonia, are at increased risk for cognitive dysfunction and dementia. In rodent models, cognitive dysfunction following pneumonia has been linked to the systemic release of lung-derived pro-inflammatory cytokines. Microglia are poised to respond to inflammatory signals from the circulation, and their dysfunction has been linked to cognitive impairment in murine models of dementia and in humans.METHODSWe measured levels of 55 cytokines and chemokines in bronchoalveolar lavage fluid and plasma from 341 patients with respiratory failure and 13 healthy controls, including 93 unvaccinated patients with COVID-19 and 203 patients with other causes of pneumonia. We used flow cytometry to sort neuroimmune cells from postmortem brain tissue from 5 patients who died from COVID-19 and 3 patients who died from other causes for single-cell RNA-sequencing.RESULTSMicroglia from patients with COVID-19 exhibited a transcriptomic signature suggestive of their activation by circulating pro-inflammatory cytokines. Peak levels of pro-inflammatory cytokines were similar in patients with pneumonia irrespective of etiology, but cumulative cytokine exposure was higher in patients with COVID-19. Treatment with corticosteroids reduced expression of COVID-19-specific cytokines.CONCLUSIONProlonged lung inflammation results in sustained elevations in circulating cytokines in patients with SARS-CoV-2 pneumonia compared with those with pneumonia secondary to other pathogens. Microglia from patients with COVID-19 exhibit transcriptional responses to inflammatory cytokines. These findings support data from rodent models causally linking systemic inflammation with cognitive dysfunction in pneumonia and support further investigation into the role of microglia in pneumonia-related cognitive dysfunction.FUNDINGSCRIPT U19AI135964, UL1TR001422, P01AG049665, P01HL154998, R01HL149883, R01LM013337, R01HL153122, R01HL147290, R01HL147575, R01HL158139, R01ES034350, R01ES027574, I01CX001777, U01TR003528, R21AG075423, T32AG020506, F31AG071225, T32HL076139.


Subject(s)
COVID-19 , Cytokines , Microglia , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/complications , Microglia/metabolism , Microglia/immunology , Cytokines/metabolism , Cytokines/blood , Male , Female , Middle Aged , Aged , Lung/immunology , Lung/pathology , Lung/virology , Lung/metabolism , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Cognitive Dysfunction/immunology , Cognitive Dysfunction/metabolism , Adult , Brain/metabolism , Brain/immunology , Brain/pathology
3.
JCI Insight ; 9(4)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227369

ABSTRACT

Hypercapnia, elevation of the partial pressure of CO2 in blood and tissues, is a risk factor for mortality in patients with severe acute and chronic lung diseases. We previously showed that hypercapnia inhibits multiple macrophage and neutrophil antimicrobial functions and that elevated CO2 increases the mortality of bacterial and viral pneumonia in mice. Here, we show that normoxic hypercapnia downregulates innate immune and antiviral gene programs in alveolar macrophages (AMØs). We also show that zinc finger homeobox 3 (Zfhx3) - a mammalian ortholog of zfh2, which mediates hypercapnic immune suppression in Drosophila - is expressed in mouse and human macrophages. Deletion of Zfhx3 in the myeloid lineage blocked the suppressive effect of hypercapnia on immune gene expression in AMØs and decreased viral replication, inflammatory lung injury, and mortality in hypercapnic mice infected with influenza A virus. To our knowledge, our results establish Zfhx3 as the first known mammalian mediator of CO2 effects on immune gene expression and lay the basis for future studies to identify therapeutic targets to interrupt hypercapnic immunosuppression in patients with advanced lung disease.


Subject(s)
Influenza A virus , Lung Diseases , Animals , Humans , Mice , Carbon Dioxide/pharmacology , Drosophila , Homeodomain Proteins/genetics , Hypercapnia , Lung , Macrophages , Mammals
4.
bioRxiv ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38076988

ABSTRACT

CD4+FOXP3+ regulatory T (Treg) cells maintain self-tolerance, suppress the immune response to cancer, and protect against tissue injury in the lung and other organs. Treg cells require mitochondrial metabolism to exert their function, but how Treg cells adapt their metabolic programs to sustain and optimize their function during an immune response occurring in a metabolically stressed microenvironment remains unclear. Here, we tested whether Treg cells require the energy homeostasis-maintaining enzyme AMP-activated protein kinase (AMPK) to adapt to metabolically aberrant microenvironments caused by malignancy or lung injury, finding that AMPK is dispensable for Treg cell immune-homeostatic function but is necessary for full Treg cell function in B16 melanoma tumors and during acute lung injury caused by influenza virus pneumonia. AMPK-deficient Treg cells had lower mitochondrial mass and exhibited an impaired ability to maximize aerobic respiration. Mechanistically, we found that AMPK regulates DNA methyltransferase 1 to promote transcriptional programs associated with mitochondrial function in the tumor microenvironment. In the lung during viral pneumonia, we found that AMPK sustains metabolic homeostasis and mitochondrial activity. Induction of DNA hypomethylation was sufficient to rescue mitochondrial mass in AMPK-deficient Treg cells, linking DNA methylation with AMPK function and mitochondrial metabolism. These results define AMPK as a determinant of Treg cell adaptation to metabolic stress and offer potential therapeutic targets in cancer and tissue injury.

5.
bioRxiv ; 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37546860

ABSTRACT

Neurological impairment is the most common finding in patients with post-acute sequelae of COVID-19. Furthermore, survivors of pneumonia from any cause have an elevated risk of dementia1-4. Dysfunction in microglia, the primary immune cell in the brain, has been linked to cognitive impairment in murine models of dementia and in humans5. Here, we report a transcriptional response in human microglia collected from patients who died following COVID-19 suggestive of their activation by TNF-α and other circulating pro-inflammatory cytokines. Consistent with these findings, the levels of 55 alveolar and plasma cytokines were elevated in a cohort of 341 patients with respiratory failure, including 93 unvaccinated patients with COVID-19 and 203 patients with other causes of pneumonia. While peak levels of pro-inflammatory cytokines were similar in patients with pneumonia irrespective of etiology, cumulative cytokine exposure was higher in patients with COVID-19. Corticosteroid treatment, which has been shown to be beneficial in patients with COVID-196, was associated with lower levels of CXCL10, CCL8, and CCL2-molecules that sustain inflammatory circuits between alveolar macrophages harboring SARS-CoV-2 and activated T cells7. These findings suggest that corticosteroids may break this cycle and decrease systemic exposure to lung-derived cytokines and inflammatory activation of microglia in patients with COVID-19.

6.
Sci Rep ; 13(1): 14104, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644108

ABSTRACT

Macrophages (MΦ) play a role in neonatal etiologies of obstructive cholestasis, however, the role for precise MΦ subsets remains poorly defined. We developed a neonatal murine model of bile duct ligation (BDL) to characterize etiology-specific differences in neonatal cholestatic MΦ polarization. Neonatal BDL surgery was performed on female BALB/c mice at 10 days of life (DOL) with sham laparotomy as controls. Comparison was made to the Rhesus Rotavirus (RRV)-induced murine model of biliary atresia (BA). Evaluation of changes at day 7 after surgery (BDL and sham groups) and murine BA (DOL14) included laboratory data, histology (H&E, anti-CD45 and anti-CK19 staining), flow cytometry of MΦ subsets by MHCII and Ly6c expression, and single cell RNA-sequencing (scRNA-seq) analysis. Neonatal BDL achieved a 90% survival rate; mice had elevated bile acids, bilirubin, and alanine aminotransferase (ALT) versus controls (p < 0.05 for all). Histology demonstrated hepatocellular injury, CD45+ portal infiltrate, and CK19+ bile duct proliferation in neonatal BDL. Comparison to murine BA showed increased ALT in neonatal BDL despite no difference in histology Ishak score. Neonatal BDL had significantly lower MHCII-Ly6c+ MΦ versus murine BA, however, scRNA-seq identified greater etiology-specific MΦ heterogeneity with increased endocytosis in neonatal BDL MΦ versus cellular killing in murine BA MΦ. We generated an innovative murine model of neonatal obstructive cholestasis with low mortality. This model enabled comparison to murine BA to define etiology-specific cholestatic MΦ function. Further comparisons to human data may enable development of immune modulatory therapies to improve patient outcomes.


Subject(s)
Biliary Atresia , Cholestasis , Humans , Female , Animals , Mice , Disease Models, Animal , Bile Ducts/surgery , Alanine Transaminase
7.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909510

ABSTRACT

Hypercapnia, elevation of the partial pressure of CO 2 in blood and tissues, is a risk factor for mortality in patients with severe acute and chronic lung diseases. We previously showed that hypercapnia inhibits multiple macrophage and neutrophil antimicrobial functions, and that elevated CO 2 increases the mortality of bacterial and viral pneumonia in mice. Here, we show that normoxic hypercapnia downregulates innate immune and antiviral gene programs in alveolar macrophages (AMØs). We also show that zinc finger homeobox 3 (Zfhx3), mammalian ortholog of zfh2, which mediates hypercapnic immune suppression in Drosophila , is expressed in mouse and human MØs. Deletion of Zfhx3 in the myeloid lineage blocked the suppressive effect of hypercapnia on immune gene expression in AMØs and decreased viral replication, inflammatory lung injury and mortality in hypercapnic mice infected with influenza A virus. Our results establish Zfhx3 as the first known mammalian mediator of CO 2 effects on immune gene expression and lay the basis for future studies to identify therapeutic targets to interrupt hypercapnic immunosuppression in patients with advanced lung diseases.

8.
JCI Insight ; 8(4)2023 02 22.
Article in English | MEDLINE | ID: mdl-36626234

ABSTRACT

Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 pneumonia, low tidal volumes to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here - using a mouse model of hypercapnia exposure, cell lineage tracing, spatial transcriptomics, and 3D cultures - we show that hypercapnia limits ß-catenin signaling in alveolar type II (AT2) cells, leading to their reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα+ fibroblasts from those maintaining AT2 progenitor activity toward those that antagonize ß-catenin signaling, thereby limiting progenitor function. Constitutive activation of ß-catenin signaling in AT2 cells or treatment of organoid cultures with recombinant WNT3A protein bypasses the inhibitory effects of hypercapnia. Inhibition of AT2 proliferation in patients with hypercapnia may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier and increasing lung flooding, ventilator dependency, and mortality.


Subject(s)
Hypercapnia , Wnt Signaling Pathway , Mice , beta Catenin/metabolism , Cell Proliferation , COVID-19/complications , Hypercapnia/metabolism , Animals
10.
bioRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168346

ABSTRACT

Pathogen clearance and resolution of inflammation in patients with pneumonia require an effective local T cell response. Nevertheless, local T cell activation may drive lung injury, particularly during prolonged episodes of respiratory failure characteristic of severe SARS-CoV-2 pneumonia. While T cell responses in the peripheral blood are well described, the evolution of T cell phenotypes and molecular signatures in the distal lung of patients with severe pneumonia caused by SARS-CoV-2 or other pathogens is understudied. Accordingly, we serially obtained 432 bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia and respiratory failure, including 74 unvaccinated patients with COVID-19, and performed flow cytometry, transcriptional, and T cell receptor profiling on sorted CD8+ and CD4+ T cell subsets. In patients with COVID-19 but not pneumonia secondary to other pathogens, we found that early and persistent enrichment in CD8+ and CD4+ T cell subsets correlated with survival to hospital discharge. Activation of interferon signaling pathways early after intubation for COVID-19 was associated with favorable outcomes, while activation of NF-κB-driven programs late in disease was associated with poor outcomes. Patients with SARS-CoV-2 pneumonia whose alveolar T cells preferentially targeted the Spike and Nucleocapsid proteins tended to experience more favorable outcomes than patients whose T cells predominantly targeted the ORF1ab polyprotein complex. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize patients who recover, yet these responses progress to NF-κB activation against non-structural proteins in patients who go on to experience poor clinical outcomes.

11.
Front Immunol ; 13: 924792, 2022.
Article in English | MEDLINE | ID: mdl-36211387

ABSTRACT

Background: Respiratory syncytial virus (RSV) can cause life-threatening respiratory failure in infants. We sought to characterize the local host response to RSV infection in the nasal mucosa of infants with critical bronchiolitis and to identify early admission gene signatures associated with clinical outcomes. Methods: Nasal scrape biopsies were obtained from 33 infants admitted to the pediatric intensive care unit (PICU) with critical RSV bronchiolitis requiring non-invasive respiratory support (NIS) or invasive mechanical ventilation (IMV), and RNA sequencing (RNA-seq) was performed. Gene expression in participants who required shortened NIS ( 3 days), and IMV was compared. Findings: Increased expression of ciliated cell genes and estimated ciliated cell abundance, but not immune cell abundance, positively correlated with duration of hospitalization in infants with critical bronchiolitis. A ciliated cell signature characterized infants who required NIS for > 3 days while a basal cell signature was present in infants who required NIS for

Subject(s)
Bronchiolitis , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Bronchiolitis/genetics , Child , Cilia , Humans , Infant , Nasal Mucosa , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus, Human/genetics , Severity of Illness Index
12.
Nat Commun ; 13(1): 6358, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289219

ABSTRACT

In addition to autoimmune and inflammatory diseases, variants of the TNFAIP3 gene encoding the ubiquitin-editing enzyme A20 are also associated with fibrosis in systemic sclerosis (SSc). However, it remains unclear how genetic factors contribute to SSc pathogenesis, and which cell types drive the disease due to SSc-specific genetic alterations. We therefore characterize the expression, function, and role of A20, and its negative transcriptional regulator DREAM, in patients with SSc and disease models. Levels of A20 are significantly reduced in SSc skin and lungs, while DREAM is elevated. In isolated fibroblasts, A20 mitigates ex vivo profibrotic responses. Mice haploinsufficient for A20, or harboring fibroblasts-specific A20 deletion, recapitulate major pathological features of SSc, whereas DREAM-null mice with elevated A20 expression are protected. In DREAM-null fibroblasts, TGF-ß induces the expression of A20, compared to wild-type fibroblasts. An anti-fibrotic small molecule targeting cellular adiponectin receptors stimulates A20 expression in vitro in wild-type but not A20-deficient fibroblasts and in bleomycin-treated mice. Thus, A20 has a novel cell-intrinsic function in restraining fibroblast activation, and together with DREAM, constitutes a critical regulatory network governing the fibrotic process in SSc. A20 and DREAM represent novel druggable targets for fibrosis therapy.


Subject(s)
Receptors, Adiponectin , Scleroderma, Systemic , Animals , Mice , Bleomycin , Cells, Cultured , Disease Models, Animal , Fibroblasts/metabolism , Fibrosis , Mice, Knockout , Receptors, Adiponectin/metabolism , Scleroderma, Systemic/metabolism , Signal Transduction/genetics , Skin/pathology , Transforming Growth Factor beta/metabolism , Ubiquitins/metabolism
13.
Front Cell Dev Biol ; 10: 929495, 2022.
Article in English | MEDLINE | ID: mdl-36200046

ABSTRACT

Vimentin is a Type III intermediate filament (VIF) cytoskeletal protein that regulates the mechanical and migratory behavior of cells. Its expression is considered to be a marker for the epithelial to mesenchymal transition (EMT) that takes place in tumor metastasis. However, the molecular mechanisms regulated by the expression of vimentin in the EMT remain largely unexplored. We created MCF7 epithelial cell lines expressing vimentin from a cumate-inducible promoter to address this question. When vimentin expression was induced in these cells, extensive cytoplasmic VIF networks were assembled accompanied by changes in the organization of the endogenous keratin intermediate filament networks and disruption of desmosomes. Significant reductions in intercellular forces by the cells expressing VIFs were measured by quantitative monolayer traction force and stress microscopy. In contrast, laser trapping micro-rheology revealed that the cytoplasm of MCF7 cells expressing VIFs was stiffer than the uninduced cells. Vimentin expression activated transcription of genes involved in pathways responsible for cell migration and locomotion. Importantly, the EMT related transcription factor TWIST1 was upregulated only in wild type vimentin expressing cells and not in cells expressing a mutant non-polymerized form of vimentin, which only formed unit length filaments (ULF). Taken together, our results suggest that vimentin expression induces a hybrid EMT correlated with the upregulation of genes involved in cell migration.

15.
JCI Insight ; 7(11)2022 06 08.
Article in English | MEDLINE | ID: mdl-35471950

ABSTRACT

The placenta is the primary organ for immune regulation, nutrient delivery, gas exchange, protection against environmental toxins, and physiologic perturbations during pregnancy. Placental inflammation and vascular dysfunction during pregnancy are associated with a growing list of prematurity-related complications. The goal of this study was to identify differences in gene expression profiles in fetal monocytes - cells that persist and differentiate postnatally - according to distinct placental histologic domains. Here, by using bulk RNA-Seq, we report that placental lesions are associated with gene expression changes in fetal monocyte subsets. Specifically, we found that fetal monocytes exposed to acute placental inflammation upregulate biological processes related to monocyte activation, monocyte chemotaxis, and platelet function, while monocytes exposed to maternal vascular malperfusion lesions downregulate these processes. Additionally, we show that intermediate monocytes might be a source of mitogens, such as HBEGF, NRG1, and VEGFA, implicated in different outcomes related to prematurity. This is the first study to our knowledge to show that placental lesions are associated with unique changes in fetal monocytes and monocyte subsets. As fetal monocytes persist and differentiate into various phagocytic cells following birth, our study may provide insight into morbidity related to prematurity and ultimately potential therapeutic targets.


Subject(s)
Placenta , Premature Birth , Female , Gene Expression , Humans , Infant, Newborn , Inflammation/metabolism , Monocytes , Placenta/metabolism , Pregnancy , Premature Birth/metabolism
16.
Sci Adv ; 8(3): eabj8357, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35061527

ABSTRACT

The production of noncanonical mRNA transcripts is associated with cell transformation. Driven by our previous findings on the sensitivity of T cell acute lymphoblastic leukemia (T-ALL) cells to SF3B1 inhibitors, we identified that SF3B1 inhibition blocks T-ALL growth in vivo with no notable associated toxicity. We also revealed protein stabilization of the U2 complex component SF3B1 via deubiquitination. Our studies showed that SF3B1 inhibition perturbs exon skipping, leading to nonsense-mediated decay and diminished levels of DNA damage response-related transcripts, such as the serine/threonine kinase CHEK2, and impaired DNA damage response. We also identified that SF3B1 inhibition leads to a general decrease in R-loop formation. We further demonstrate that clinically used SF3B1 inhibitors synergize with CHEK2 inhibitors and chemotherapeutic drugs to block leukemia growth. Our study provides the proof of principle for posttranslational regulation of splicing components and associated roles and therapeutic implications for the U2 complex in T cell leukemia.


Subject(s)
Leukemia, T-Cell , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Homeostasis , Humans , Mutation , Phosphoproteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
17.
J Leukoc Biol ; 111(1): 113-122, 2022 01.
Article in English | MEDLINE | ID: mdl-33857341

ABSTRACT

Bone marrow is a hematopoietic site harboring multiple populations of myeloid cells in different stages of differentiation. Murine bone marrow eosinophils are traditionally identified by Siglec-F(+) staining using flow cytometry, whereas neutrophils are characterized by Ly6G(+) expression. However, using flow cytometry to characterize bone marrow hematopoietic cells in wild-type mice, we found substantial gray areas in identification of these cells. Siglec-F(+) mature eosinophil population constituted only a minority of bone marrow Lin(+)CD45(+) pool (5%). A substantial population of Siglec-F(-) cells was double positive for neutrophil marker Ly6G and eosinophil lineage marker, IL-5Rα. This granulocyte population with mixed neutrophil and eosinophil characteristics is typically attributable to neutrophil pool based on neutral granule staining and expression of Ly6G and myeloid peroxidase. It is distinct from Lineage(-) myeloid progenitors or Siglec-F(+)Ly6G(+) maturing eosinophil precursors, and can be accurately identified by Lineage(+) staining and positive expression of markers IL-5Rα and Ly6G. At 15-50% of all CD45(+) hematopoietic cells in adult mice (percentage varies by sex and age), this is a surprisingly dominant population, which increases with age in both male and female mice. RNA-seq characterization of these cells revealed a complex immune profile and the capacity to secrete constituents of the extracellular matrix. When sorted from bone marrow, these resident cells had neutrophilic phenotype but readily acquired all characteristics of eosinophils when cultured with G-CSF or IL-5, including expression of Siglec-F and granular proteins (Epx, Mbp). Surprisingly, these cells were also able to differentiate into Ly6C(+) monocytes when cultured with M-CSF. Herein described is the discovery of an unexpected hematopoietic flexibility of a dominant population of multipotent myeloid cells, typically categorized as neutrophils, but with the previously unknown plasticity to contribute to mature pools of eosinophils and monocytes.


Subject(s)
Antigens, Ly/analysis , Eosinophils/cytology , Interleukin-5 Receptor alpha Subunit/analysis , Monocytes/cytology , Myeloid Progenitor Cells/cytology , Neutrophils/cytology , Animals , Bone Marrow Cells/cytology , Cell Differentiation , Cells, Cultured , Female , Leukopoiesis , Male , Mice, Inbred BALB C
18.
J Allergy Clin Immunol ; 149(5): 1666-1674, 2022 05.
Article in English | MEDLINE | ID: mdl-34953792

ABSTRACT

BACKGROUND: Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is well characterized by type 2 (T2) inflammation characterized by eosinophilia in Western countries. However, the presence and roles of neutrophils in T2 CRSwNP are poorly understood. OBJECTIVE: We sought to clarify accumulation and inflammatory roles of neutrophils in CRSwNP in a Western population. METHODS: Sinonasal tissues and nasal lavage fluids were obtained from control patients and patients with CRS, and neutrophil markers were determined by ELISA. The presence of neutrophils in tissue was determined by flow cytometry. The gene expression profiles in neutrophils were determined by RNA sequencing. RESULTS: A neutrophil marker elastase was selectively elevated in nasal polyp (NP) tissue, whereas eosinophilic cationic protein (an eosinophil marker) was elevated in both uncinate and NP tissues of CRSwNP patients. Nasal lavage fluid myeloperoxidase (another neutrophil marker) was also significantly elevated in CRSwNP compared to control patients. Neutrophil markers were more greatly elevated in CRSwNP patients with recurrent disease. Flow cytometric analysis confirmed that neutrophil numbers were significantly elevated in NPs compared to control tissues. RNA sequencing analysis found that 344 genes were >3-fold and significantly elevated in NP neutrophils compared to peripheral blood neutrophils. Gene Ontology analysis suggested that the elevated genes in NP neutrophils were significantly associated with activation. Results suggest that neutrophils are accumulated in T2 NP tissues and that accumulated neutrophils are highly activated and contribute to inflammation in NPs. CONCLUSIONS: Neutrophils may play a heretofore unrecognized meaningful role in the pathogenesis of CRSwNP in Western countries and may be a potentially important therapeutic target in T2 CRSwNP.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Biomarkers , Chronic Disease , Humans , Inflammation/pathology , Nasal Polyps/pathology , Neutrophils/pathology , Rhinitis/pathology , Sinusitis/pathology
19.
Am J Respir Cell Mol Biol ; 66(2): 206-222, 2022 02.
Article in English | MEDLINE | ID: mdl-34731594

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 180 million people since the onset of the pandemic. Despite similar viral load and infectivity rates between children and adults, children rarely develop severe illness. Differences in the host response to the virus at the primary infection site are among the mechanisms proposed to account for this disparity. Our objective was to investigate the host response to SARS-CoV-2 in the nasal mucosa in children and adults and compare it with the host response to respiratory syncytial virus (RSV) and influenza virus. We analyzed clinical outcomes and gene expression in the nasal mucosa of 36 children with SARS-CoV-2, 24 children with RSV, 9 children with influenza virus, 16 adults with SARS-CoV-2, and 7 healthy pediatric and 13 healthy adult controls. In both children and adults, infection with SARS-CoV-2 led to an IFN response in the nasal mucosa. The magnitude of the IFN response correlated with the abundance of viral reads, not the severity of illness, and was comparable between children and adults infected with SARS-CoV-2 and children with severe RSV infection. Expression of ACE2 and TMPRSS2 did not correlate with age or presence of viral infection. SARS-CoV-2-infected adults had increased expression of genes involved in neutrophil activation and T-cell receptor signaling pathways compared with SARS-CoV-2-infected children, despite similar severity of illness and viral reads. Age-related differences in the immune response to SARS-CoV-2 may place adults at increased risk of developing severe illness.


Subject(s)
Aging/immunology , COVID-19/immunology , Gene Expression Regulation/immunology , Immunity, Mucosal , Nasal Mucosa/immunology , SARS-CoV-2/immunology , Adolescent , Age Factors , Angiotensin-Converting Enzyme 2/immunology , Child , Child, Preschool , Female , Humans , Infant , Male , Nasal Mucosa/virology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , Serine Endopeptidases/immunology
20.
Nat Aging ; 2(12): 1191-1206, 2022 12.
Article in English | MEDLINE | ID: mdl-37118543

ABSTRACT

Aging is among the most important risk factors for morbidity and mortality. To contribute toward a molecular understanding of aging, we analyzed age-resolved transcriptomic data from multiple studies. Here, we show that transcript length alone explains most transcriptional changes observed with aging in mice and humans. We present three lines of evidence supporting the biological importance of the uncovered transcriptome imbalance. First, in vertebrates the length association primarily displays a lower relative abundance of long transcripts in aging. Second, eight antiaging interventions of the Interventions Testing Program of the National Institute on Aging can counter this length association. Third, we find that in humans and mice the genes with the longest transcripts enrich for genes reported to extend lifespan, whereas those with the shortest transcripts enrich for genes reported to shorten lifespan. Our study opens fundamental questions on aging and the organization of transcriptomes.


Subject(s)
Aging , Transcriptome , Humans , Animals , Mice , Transcriptome/genetics , Aging/genetics , Longevity/genetics , Gene Expression Profiling , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...